Prepared by

Prepared for
Drake Evans

Junghoon Cho
Aaron Esau

Zellic

Mysten Labs, Inc.

August 5, 2024

AUSD

Smart Contract Security Assessment

1% :
\\4W ZeIIIC AUSD Smart Contract Security Assessment August 5, 2024
Contents About Zellic 3

1. Overview 3
11 Executive Summary 4
1.2. Goals of the Assessment 4
1.3. Non-goals and Limitations 4
1.4. Results 4
2. Introduction 5
21. About AUSD 6
2.2. Methodology 6
2.3. Scope 8
2.4. Project Overview 8
2.5. Project Timeline 9
3. Detailed Findings 9
31. Noversion check for treasury in roles 10
4. Threat Model 1
5. Assessment Results 13
51. Disclaimer 14

Zellic © 2024 <— Back to Contents Page 2 of 14

AUSD Smart Contract Security Assessment August 5, 2024

About Zellic

Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, and more.

Prior to Zellic, we founded the #1CTF (competitive hacking) team 2 worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

For more on Zellic's ongoing security research initiatives, check out our website zellic.io » and follow
@zellic_io »on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io 2.

1Z
N
)

Zellic © 2024

< Back to Contents Page 3 of 14

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

AUSD Smart Contract Security Assessment August 5, 2024

1. Overview

11. Executive Summary

Zellic conducted a security assessment for Mysten Labs, Inc. from August 1st to August 2nd, 2024.
During thisengagement, Zellic reviewed AUSD's code for security vulnerabilities, design issues, and
general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

» Are there any bugs that may result in loss of user funds?
» Can unauthorized entities mint or burn?
 Areroles properly respected?

1.3. Non-goals and Limitations

We did not assess the following areas that were outside the scope of this engagement:

» Front-end components
« Infrastructure relating to the project
» Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped AUSD modules, we discovered one finding, which was
informational in nature.

Zellic © 2024

< Back to Contents Page 4 of 14

[E=
NN
\4W ZeIIIC AUSD Smart Contract Security Assessment August 5, 2024
Breakdown of Finding Impacts
Impact Level Count
M Critical 0
B High 0
Medium 0
B Low 0
Informational 1
Zellic © 2024 < Back to Contents Page 5 of 14

AUSD Smart Contract Security Assessment August 5, 2024

2. Introduction

2.1. About AUSD

Mysten Labs, Inc. contributed the following description of AUSD:

AUSD is a digital dollar to be used across blockchains, enabling permissionless transfers for
users.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
both automated testing and manual review. These processes can vary significantly per engagement,
but the majority of the time is spent on a thorough manual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic coding mistakes. Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, we may also employ sophisticated analyzers such as model
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the modules.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomics or dangerous arbitrage opportunities. To the best of our abilities, time permitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and

Zellic © 2024

< Back to Contents Page 6 of 14

AUSD Smart Contract Security Assessment August 5, 2024

Informational.

Zellic organizes its reports such that the most important findings come first in the document, rather
than being strictly ordered on impact alone. Thus, we may sometimes emphasize an "Informational”
finding higher than a"Low" finding. The key distinction is that although certain findings may have the
same impact rating, their importance may differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Zellic © 2024

< Back to Contents Page 7 of 14

l .
NN
\4W ZeIIIC AUSD Smart Contract Security Assessment August 5, 2024

2.3. Scope

The engagement involved a review of the following targets:

AUSD Modules

Type Move

Platform Sui

Target ausd

Repository https://github.com/MystenlLabs/ausd ~

Version 469648c5fbcaal397e34c0a2410c44a0befladddce
Programs packages/sources/admin/admin.move

packages/sources/admin/proposals.move
packages/sources/constants.move
packages/sources/ausd.move
packages/sources/roles.move
packages/sources/roles/pauser.move
packages/sources/roles/minter.move
packages/sources/roles/freezer.move
packages/sources/roles/burner.move
packages/sources/treasury.move
packages/sources/setup.move

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of 0.6 person-weeks. The assess-
ment was conducted by two consultants over the course of two calendar days.

Zellic © 2024 < Back to Contents Page 8 of 14

https://github.com/MystenLabs/ausd

AUSD Smart Contract Security Assessment

August 5,2024

Contact Information

The following project manager was associated
with the engagement:

Jacob Goreski
¥ Jr. Engagement Manager

2.5. Project Timeline

The following consultants were engaged to
conduct the assessment:

Junghoon Cho
Engineer
junghoon@zellic.io #

=
A
LAY

Aaron Esau
Engineer
aaron@zellic.io z

=
A
LAY

The key dates of the engagement are detailed below.

August1,2024 Start of primary review period

August 2,2024 End of primary review period

August 2,2024 Kick-off call

Zellic © 2024

< Back to Contents

Page 9 of 14

mailto:jacob@zellic.io
mailto:junghoon@zellic.io
mailto:aaron@zellic.io

AUSD Smart Contract Security Assessment August 5, 2024

3. Detailed Findings

3.1. No version check for treasuryin roles

Target treasury.move

Category Coding Mistakes Severity Informational

Likelihood N/A Impact Informational
Description

The function roles returns a reference to the Roles object of the given treasury.

public(package) fun roles<T>(treasury: &ManagedTreasury<T>): &Roles {
&treasury.roles

Thereturned reference is used to check if the sender of the transaction can use privileged functions
such as mint, freeze, and burn. The code snippet below is an example of freeze_address using the
reference to roles to perform this authorization.

public fun freeze_address<T>(
treasury: &mut ManagedTreasury<T>,
denylist: &mut Denylist,
addr: address,
ctx: &mut TxContext,

) |
treasury.roles().assert_is_authorized<FreezerRole>(ctx.sender());
treasury.roles().assert_is_not_paused<FreezerRole>();
coin::deny_list_add(denylist, treasury.denylist_cap_mut(), addr, ctx);
}

The roles function currently lacks a check that the treasury is not outdated.

Impact

The Roles object of an outdated version of treasury can be borrowed, allowing authentication on
capability. However, any operations that require a mutable reference to a capability cannot be done.

Recommendations

Add the following check to roles.

Zellic © 2024

< Back to Contents Page 10 of 14

l .
NN
\4W ZeIIIC AUSD Smart Contract Security Assessment August 5, 2024

public(package) fun roles<T>(treasury: &ManagedTreasury<T>): &Roles {
treasury.assert_is_valid_version();
&treasury.roles

Remediation

Mysten Labs, Inc. explained that the decision not to require version checks onimmutable access to
roles was made to preserve the ability for admins to switch versions across all packages and similar
functionalities.

Zellic © 2024 <— Back to Contents Page 11 of 14

4ﬁ Zel I IC AUSD Smart Contract Security Assessment August 5, 2024

4. Threat Model The system defines the roles described in this section.

Admin
The role has the following abilities:

» Setanew config version
» Authorize a new admin

» Authorize a new minter
» Authorize a new freezer
» Authorize a new burner
» Authorize a new pauser
» Deauthorize an admin

» Reject proposals

Timelocked admin
The role has the following abilities:

» Create a proposal to authorize an admin

» Create a proposal to authorize a minter

» Create a proposal to authorize a freezer

» Create a proposal to authorize a burner

» Create a proposal to authorize a pauser

» Create a proposal to deauthorize an admin

» Reject proposals created by themselves

» Execute proposals created by themselves that have been queued for the timelock period

Freezer
The role has the following abilities:

» Freeze an address, provided the role is not paused
» Unfreeze an address, provided the role is not paused

Burner

The role has the ability to permanently freeze any number of tokens, provided the role is not paused.

Zellic © 2024 <— Back to Contents Page 12 of 14

4ﬁ Zel I IC AUSD Smart Contract Security Assessment August 5, 2024

Minter

The role has the ability to mint new tokens, provided the role is not paused, within limits defined by
the MintConfig (defined by the admin who authorized the minter).

User

The role has the ability to transfer their own tokens, provided their address is not frozen.

Zellic © 2024 <— Back to Contents Page 13 of 14

AUSD Smart Contract Security Assessment August 5, 2024

5. Assessment Results

At the time of our assessment, the reviewed code was not deployed.

During our assessment on the scoped AUSD modules, we discovered one finding, which was infor-
mational in nature.

51. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommend multiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, and we encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024

< Back to Contents Page 14 of 14

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About AUSD
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	No version check for treasury in roles

	Threat Model
	Assessment Results
	Disclaimer

